Cypher Technical Documentation
  • Introduction
    • Overview
    • Key Features and Technical Advantages
    • Developer Focused Development
  • Technical Innovation
    • Fully Homomorphic Encryption EVM (fhEVM)
    • Layer 3 Architecture
    • Privacy-Preserving Data Management
    • Seamless Integration
    • Optimized for Privacy-Critical Applications
  • Cypher’s fhEVM Technology
    • What is fhEVM?
    • Architecture of fhEVM
    • Detailed Supported Operations in fhEVM
  • Deploying Smart Contracts on Cypher Testnet
    • Configuration and Deployment
    • Obtaining Testnet Tokens
  • Operations in a fhEVM Framework
    • Concepts
    • Random
    • Secret Store and Access Control in Encrypted Smart Contracts
    • Using fhevmjs for Encrypted Smart Contract Development
  • Tokenomics V2
    • $DEAI Token
    • Token Utility
    • Token Distribution
  • Cypher Layer 3 Tech Integration
  • Glossary
Powered by GitBook
On this page
  • Use Cases and Applications
  • 1. Privacy-Preserving dApps
  • 2. Collaborative Encrypted Workflows
  • 3. Error-Resilient Encrypted Smart Contracts
  1. Cypher’s fhEVM Technology

Detailed Supported Operations in fhEVM

Name

Function Name

Symbol

Type

Add

TFHE.add

+

Binary

Subtract

TFHE.sub

-

Binary

Multiply

TFHE.mul

*

Binary

Divide (plaintext divisor)

TFHE.div

Binary

Remainder (plaintext divisor)

TFHE.rem

Binary

Bitwise AND

TFHE.and

&

Binary

Bitwise OR

TFHE.or

|

Binary

Bitwise XOR

TFHE.xor

^

Binary

Shift Right

TFHE.shr

Binary

Shift Left

TFHE.shl

Binary

Rotate Right

TFHE.rotr

Binary

Rotate Left

TFHE.rotl

Binary

Equal

TFHE.eq

Binary

Not Equal

TFHE.ne

Binary

Greater Than or Equal

TFHE.ge

Binary

Greater Than

TFHE.gt

Binary

Less Than or Equal

TFHE.le

Binary

Less Than

TFHE.lt

Binary

Minimum

TFHE.min

Binary

Maximum

TFHE.max

Binary

Negate

TFHE.neg

-

Unary

Bitwise NOT

TFHE.not

~

Unary

Select

TFHE.select

Ternary

Random Unsigned Int

TFHE.randEuintX()

Random

Use Cases and Applications

1. Privacy-Preserving dApps

  • Finance: Confidential portfolio management, fraud detection, and secure risk analytics.

  • Healthcare: Privacy-preserving medical data analysis and encrypted patient record management.

  • AI: Federated learning and secure on-chain model evaluation without exposing sensitive datasets.

2. Collaborative Encrypted Workflows

  • Secure Multiparty Computations (SMC): Facilitate multi-party collaboration without revealing private inputs.

  • Re-encryption: Transfer ciphertext ownership securely, enabling collaborative dApp functionalities.

3. Error-Resilient Encrypted Smart Contracts

  • Contracts handle errors natively without exposing plaintext states, enhancing reliability.

PreviousArchitecture of fhEVMNextConfiguration and Deployment

Last updated 5 months ago